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TUIXNELCORl?ECTIOIYF~COM?RESSIBIiE

By A. V. Barenoff

SUMMARY

This report presents a treatment of
w411s on the flow velocity and direction

Smscmc FL@f*

the effects of the tunnel
in a compressiblemedium

at subsonic speed by en apprcxzimatemethod. Solu;lons with numerical,
calculations are given for the rotationeM.y symmetric and two-
dimensionsl problems of the flow past bodies, aa well as for the
dcwnwash effect in the tunnel with circular cross section.

b

r
h

J

IJ

fl.

R

o

T

1. SYMBOLS

wing EIFan d the model wing

circulation

half of the tunnel height, two-dimensional caso

profile volume of’the model, two-dimensional.case

Mach nunibersquared in the undisturbed flow

variable of integration

tunnel radius

variable of integration

volume of the model, case of rotational syrmnetry

*“Z% lkege der K-orrektur bei IcompressibleimUnterschall-
strhvmgj FB 1272, Zcmtrale fi.irwiss.enschaftlichesBeri+hixswesen
fiberLuftfahrtforschung (ZWB) Berlin-Adlershof, July ‘!5,1940.

.

.+IIMS list o@y ‘containssymbols appeering in the final results
(quations (17), (25); (31), (32):,(41),and( 42)). Symbols u&ed
in intermediate calculations.ereexplained at the point of their
introduction. ,.
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ii increased velocity at the tj~l: w-

U* additional axisl velocity (due to the constriction of the stream)

~% additional upwash velocity (due to the constriction of the stream)
~, P, or ~, q ~~e the coordinates for the case of
rotational symmetl”yor two.Mm8nsiom, rendered dimensionless
by,division by R or h. . ,,.

,, !

2. G~ ST~ OF THE PROBLEM
,,.,

The effect of the tunnel wall& on the flow sround a body
acquires increased significance at high velocities as much through
compressibilityas through the often unfavorable ratio of model
dimensicms to tunnel diameter. InthisY the question concerns
the effects on the flow speed and direction, the ~lrst case of
which is, possibly, that of a model, symmetrically suspended,”in
a flow where there is zero lift, while tiie~econd case’is that
of a circulatory flow past a thin profile. The differential
equation for compres~ible subsonic flow should be taken eg a basis,
here, in the approximation form nemed
represents the velocity yctentiel, in
equation, then, reads:

This holds fw a so-celled. near

after Prandtl. If ~
cylindrical coor~nates this

(ppp? =() (~)

parzitlel.flow, that is a.
uniform principsl flow in the direction of the x-axis on which
is superimposed.a flow of ordi~ily smell velo”ci~. .

Now let @ bo”the potential of the flow in the mediui,
unco&ined, end @* the potenti”~ of,the additional.flow appesring
because of the,effects of the tunnel”wcills.W certain& satisfies
the differential equation (1) in the entire range bf the interior
of the tunnel as a good approximation. The seinecqot be”said
of @ becauae in the vicinity,of the boQv,the.,de-(iationsfrom the
principel flow can be of the same order of msgmitude as the
principql flow, itself’, The qumti.ty, ~, ~~~~, however, cert~fly

do at a distance from the body, that is, in the neighborhood of
the t~el wa~, possi~~y, just as we~ as Q + of equation (l).
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Now since the connection between @ and ~* consigts of.the,,-.
fact that .,

at the tunnel wall, the @ desired.,istouched only slightly
by the uncertainty in the potential ~ in the vicinity of the
body as far as it succeeds, that is, in giving solutions of
equation (1) of such a k$nd which describe the action of the”body,
which the flow moves past at a great dd.stancefrum it with
sufficient accuracy. First of all, in the.following the rotationally ~
symmetrical sad the two-dimensional problem for the flow past a
model will be treated, for which ascertaining a correction factor
for the flow velocity or its Mach nuniberis the ob~ect of this
investigation. In the conclusion, the problbm of downwash correction
factor is handled in connection with that. In a formal sense the
method in all three cases depends on the same artifice (compare
reference 1), n~ly, in that the condition.at the”edge (reference 2)
is satisfied, first of all, within a finite longitudinal section 22
of the tunnel cylinder, and the l$mit 2+~ is taken only then.
The solutions all appesr, therefore, in the form of Fourier integrals.
It should be mentioned that in the two-dimensional case the method
of reflection of the singularities (reference 2) leads to a solution
that is more ,convenientfor the purpose of numerical calculation.

3 ● EFFECTOF THETUNNELWAIL ONTHE lIGOWPAST BODIXS

(CASE OF ROTATIONAL SYMMETRY)

It is logical to describe the disturbances that abody past
which there is flow, causes at some distance from itself by a
superposition of sources and sinks in which the source end sink
potentials satisfying equation (’1)me readily expressible. The
discussion is ljnd.ted,at this point, to the case where the body
is small enough in comparison to the tunnel rtius so that its
action can be-replaced-accuratelyenough by that
dipole. The potential of such a dipole.with the
exi+ ,ofsynmetry, figure 1, reads:,:s ,,

of a single
x-axis as its
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Regarding the meaning of-the ‘dipolemoment ~,- ergum&rbe

will not be yresented till section 5.

For the additional potentiel @*, which give~ the aotion
of the tunnel walls on the flow, the following estimate is mede:

,.,. O* -P(r”) X(x] :
.

with which the following equation derives from (1) -

pi! +&p?
~lf

+ “(i - V) P“r= o
r (4)

.

First ofalJ., to satisfy ~he boundary condition (2) only
f’ol-Ixj<l, itisnecessaryto se,

.,..
,’

X“+U 2X=0 (5)’,.

in which

k= l,2,3..,’;.....>::

It is readly seen, that because of (3) and (2) x appears to
an odd power in Q* so that only

,.

enters in as a
transforms to

X=sin~~x ,’

Onaccovnt of (5)”’equation,-(4)solution of (5).

(6)

.7

T?”-JP +P)+=O
r (7)

/ ,.

.9 ..””
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.. .. . . The s@ution of this so-ceJ.l.ed.modified.Bessel% differential.,. ,,. . .,
iq<ation is ,.,

. . .

.,, P =10 pli~),
.

(8)

where 10 is the mo~fiedBessel function of the first type ”and
zero order. The corresponding function of the second type does
not enter into the.question because of the requ$r~nt of.
regularity for Q-Y-.’The general solution,developsfrom (6)and
(8) bY-summationover all inte@al val.u6q of k... With the use
of the d~m.ensionlessquantities

it reads

The

boundary

definition of the coefficients
Ck follow from the

condition (2). To begin with, for p = 1

k

Expanding
comparison of
the following

.— Y

(9)

(10)

the ri@t-hand side in a Fourier series In ~, by
coefficients, after some intermdi.ate calculation,
is obtained

Gk =

‘x%’%’Q=%)
(12)“

..



; ~I@ substit@i~ (~2)J@ (LO) qd takin@ the limit k ~~” the
following is obtained . . . . .,,

,.
The inner integral.in this CM be put in a form where it is

expressible by a modifLed Bessel~s function of the second type -
and first order. This is, namely,

where K1 is the function mentioned.
bj; ~S.tlS of this, to

—

,..
!

—.
\/l - p

Equation (13) reduces, .

1

A new variable of integration can be written for 41 -“Pq
here (represented again by q in the”’fou;~wi~) and “the”expression.

.. . . . . .,. .,,.

U* =

is obtained

II+-

~/’cos(~;)~o(iP)%-dq (1~)
21C2R3f~~ ~ o

,.,

for the axial additional velocity. In wind tunnels,
there is the possibilityof finding the velocity at the tunnel ;eJ.1
by measurement of tho static presswe at the tunnel WSJ-1. The
increased velocity there,is canptitedfrom the twc potentials (3)
and (14) for E = O as ~-

rco 1
‘4””’ ‘YT‘ fl?lq(d

Ti= Io(q)-—
&E3 ~~3 ““5+’ o

1

dq (16)
I@-.
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Eliminating the dipole moment in (15)
thenat the’posi~~on of””thebody (~ = p =

U**,= o*454ii

7

W& the qid of (16),

(17)

is obtained for the correction-factorvelocity where it cenbe
a~certained by measurement.(See section 7 for”the numerical
calculation of the factor,) The relationship (17) is independent
of Mach number.

4. EFFECT OF THE TUNNEL WAIL ON THE FLOW l?ASTBODIES

(Two-DimensionalCase, see Fig. 2)

In the two-dimen~ional case the differential equation for the
velocity potential reads

A solution of this equation, which is associated with the
dipole, reads ,.

(18)

(i9)

First of all, the moment ~ is simply regsrded as given; later on,
its relation to”the size of the body and to the Mach number will
be discussed further. To fuj.fillthe boundary conditions at the
upper and lower tunnel wall (y = th) “requiresthe introduction
of an additional potentisJ.f?’++which likewise.shoul..dsatisfy
equation (18).

Through the statement

Q* -Y(y) x(x) “

I...—.—.—-—.—.—-—.-—,-.——— ...—— ..........,.,..——-.--—.—.-..... ....-.....-—-—. ——-
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it is emy t-o’get a genOral solution. ” Its.form consistent ‘,&th,(19)
end the boundary oo.nditioh reads” ‘ “ ‘ ,,. ,

(20)

. .

To satisfy”the boundary conditions, exactly the sane procedure
is to be observed as in the @eceding section. After taking the
limit as 2~ m and by applyi~ the dimensionl.essformulaS

the expression

/“
ncn

~*=m&-ii sin(q~ cosh(-6??) dq

~

cos(qa)da

f12h o Sinh ( c; q) oa2+ l-p

is obtained.

On account of

f

m

cos(qa)da

o ‘~ ‘=‘% ‘-q=a~+l-

after the introduction of a new variable of integration finally
becomes

The axie3 additional velocity now reads
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The ~ncreadti. ve16c’it,y &t’,the’ .w~ ~ (~ = Oj v = 1) is
introduced again. !!?h6~~,cttifi ‘~loclty at the point . ( ~.= q = O),., :.i~then . ~ ., “’”. , “:,, .: ,,,, . . ,.”

,., , . . .’

;u*=&. ~ “
. ?“:.0.3.

(25)

.. J

where ii is the increased velocity measured at the wall.

.$

5. UWEWE3WY” OF THE DII?OIJ3MOMENT ON BOI& VOLUME!AND MACH NUilBER

The dipole moments ~ and ~ introduced in equations (3)
and (19) should not be set in relation to the volume of the bo@
that the flow passes any more. Since those yotentisls orilJcontain
a f3ingleparemeter, the voltie of the Body is the ?.nosti’suitable
quantity, in fact, for the definition of this parm.wter’. The
flow past the %ody could be introduced as a seiios of dipoles that
has set to work in its interior. Each individual dipole signifies
a certain displacement of the outer flow, which is obtained most
easily with the aid.of the flow ftiction. Therefore, the relation
,between the potential and the flow function must be set up, first
of en. In its exact form it reads for the case of rotational
syzmnetry

,. P’3’=y
‘r p. & &

(26)

..

The equations (26) are not linear on account of,ihe dependency
between the density”p .:and~he vei~:ity, however, they can Be
linearized into the following-form: ~ ~~ ,,

The author is obliged to Dr. Ing. B. G6thert for pointing this out.

—,-
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The approximate form (,%a). is equivabnt to-the dlfferenti”sl
equation for ~ obtained from (3) for G,~the ‘case.of.rotational.
symetry and a corresponding equation for *. The flOW function”
of a dipole in a uniform flow reads, therefore, in accord tith (26)

Ur2 (Z -lJ)Illr r2 . .
G-p- ~fi ‘ (27)

p)r2 3

By setting @
the stresm flows ‘is

,

equal to O the contour of the body past which
o;tained and frctnthis its

so that in this case the moment is, therefore}
Mach nwdber. For.the two-dimensional case the
to the system (26a) may be written down readily; From the flow
function satisfying them

volume/’f; It is

[28)

Independent of the
relations corresponding

(1-ll)me y
* =Uy - Gfi — (29)

“X2+ (1 - IJ)yp ~

the volume of the body past which the stream flows (volume within ~
surface of the contour past which the stream flows) is obtained as

From this is obtained the fact that the dipole moment in the
two-dimensionalcase is.d~pendent on the Mach number. This result
is in accord with the so-called Prandtl~s rule (reference 3); The
objection could be raised against ‘thisconsideration that it
investigatesthe flow past a body taking as a basis an individual
dipole de facto, which does not,satisfy the I?randtlcondition of
slenderness. It might, therefore, have been more acceptable to
represent the body pOS@i-Dlyby assuming a itktribution of sources
and sinks &long its axis. Now if this is done, then in the extreme
case of a very slender body admittedly the came dependency of
the product of source stiength .bysource-sink distance on the
Mach nmnber is obtained as that for the dipole moments in

. . .,. .,’. .
:.,
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equations (28) and (30),,“whileon the .’other”handtlie’n~eric~
fticfor~ch~e;” the~-become equal to 1 in both cases,,that is .,

4-
?

‘T
(28a)

mJ/1-lJ
J= ~. -:’.

The dipole moment for thecase of rotatioti symmetry calculated
from (28) would then be, accordingly,,50,percenk’,”tid that”””for
the two-dimensional case accor~~ to (30)fully 100 percent
larger than that fr~ the second consideration.,“Sincethe bodies
that appear practics2 as mocielsare slender, ash rub, the ‘
adventage belongs righbly to the second consideration in etier~ case.

Therefore, introducing (2%.) smd (30a) into (15) or (24), now}
the following is obtained

UT /F”

()‘g 10(CW)
q%q(q)@ =. .- / COE3 —— -—— dq (31)—-

2n2B3i&~p 3J0 1/1-IL I@

for the ca~e of rotational synmetry and

.m

for ‘thetwo-dimensional one. At the posit~on
for ~ip.o OXg = 11 = o, the f’OllOWi~

0.1268 UTUO* .,—- —.
~1-p3R3

of the body, therefore,
relations are obtained

(31a)

a Uj
UO*=——— —--

0.1309 Uj-— (32a)
‘24\/rj”3 h.?

——
‘“@-v 3h2, . . .

Im
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It is noteworthy that the factor in f&ont of the inte~al in both
cases (equatiofis(~i-)“~ad “(32))
the Mach nwnber,

,. 6. DCWNWASE ANILE CORRECTION I!N‘THE

show~”%ho same dependerioy on

CLOSTD TUNNEL AND IN THE OPEN JET

In the two-dimensional case the circulatory flow furnishes
no contribution to the a@e- of-attack correction factor at the
posi”kion of the bo~y. On that account only the three-dimensional.
problGm in the. tunnel of circular cross section is handled in the
f Ollowing ● For this the action of the modgl can be approximated
by a horseshoe-vortex of infinitely .mnalls-pen. If instead of
the velocity potential Q of such a vortex its acceleration
potential ~ is introduced, certain further advant~es result,
in pariiouler, the pmstbility of keeping the method of solution
applied up till now.

The linearized relation”betwuen

. ;’x

# exd @ reads, (reference 4).

Wx (33)

For that very reason v i~ also a solution of the differential
equation (l). The horseshoe vortex of infinitely small span
corresponds to the acceleration potential of a dipole with its
axis in thu direction of the z-sxis (fig. 3); this potential
reads

The appropriate irelocityyotentisl can bo ascertained from
with (33). It reads

(34)

IJ’z

r

x
#= .— 1—=====-1

4n(yQ .F ~ rz~)l\x*+.”(~-
(35)~) (Y2 ~ /)

For given r the Mach number exerts no influence on the
flow, this holds a~ much in the plane of the wing (x = 0) as
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s3.soinfinitely fer behind the wing (x-+’”). At the mme tlm it -
is seen that @“’and all cross c’bmponentsof the velocity at an
infinite distance have double the yalue compared to that
at the position of the wing. The tunnel correction factor at an
infinite distance IS vend, therefore, at the posit$on of the wing,
tea, if it is multiplied ~? one-half. The additional yotentiel of the ‘
flow cantingabout throu@ the action of’the jet boundary, at an
infinite ti.stsace,is

(36)

in which the upper si~ holds for the clo~ed tunnel and.the lower
sign for the open Jet.

Now the general three-dtiensionelproblem is to be treated.
A.tthis point em ad~ticmal potentiel O* is introduced which
snows the boundary conditions at the edge of the jot to be
satisfied. It is eemily eeenths,t the boundsry conditions(2)
are also valf d-forthe acceleration potential.:

:;(q+cP*)=o (37)

Tho bow&ry condition for the open jet is obtained as

The courses of calculation for the open jet end closed tunnel
run oft very much alike. It corresponds,moreover, step by step,
to the method described in sections 3 end 4. An abbreviated exposition
will do here, therefore, in which only the closed tunnel is taken
Up$ first of all.

On account of (34) the following is applied..

w-’“ cob $ P(r) X(x)

/
.-..—
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The general solution reads, after nnking use of (9).

I
L m

where 11 Is the modified

first order.

The coefficient ck

Besselcs function ol”the first type and

are determined from the boundary condi-.

tions (37), which are satisfied only for lq <X . If the

limit X-+CU is taken, the final solution-is obtained which after
application of the inte~al representations
functicns of the second type takes the form

r’lm
bru cos ;

I

@
P* ‘-—”— Cos —— Il{w )

2n%*flT:” ~ l!J..-.

for the modified Besselts “

Kl(g) - qK@
..— -— dq (40)

Ii?(q)

From this with the aid of (33) the additional upwash component
is obtained

/’7+’d=1.
., ?W

@ = -. -+& Cos (qu)

J-al Jo

The corresponding upwash component

q2K@- Ml(q)
—- - dq (41)

Ilt (q)

in the open Jet is

~Qa) q2~(q)
dq (42)

Ii(q)

The results (41) and (42) confirm the observeticm already made,
heretofore, that there is no effect due to cm?pressi%ility a.tthe
position clfthe wing and at an infinite distance. Tm the remainder
the same additional upwash prevails at a position 5 behind the
wing as would be present in incompressibleflow at the position

—. Since the amount of the correction’velocityincreases
q:- p

monotonically’with increasing distance behind the wing in the open
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jet and likewise increases least in.theclos,edtunnel within a
range”“c-Cmqmrableto the’tunnel radiue, the compressible flow,
therefore, has an absolutely ler~er ccmrectim factor.

“i. NUMERICAL ZUE’ULTS . ...

‘Inthe followi~ the results of soreyel ntmmricsl calculations

shfdl be cmq$ldd and discussed in detail. The sxiti velocity
w% for the case of rotational synuuetryis best calculated frc?n ~~
formula (15) or better still (31). For this purpose the j.nt%rd

(43)

Simpson:s rtd.r‘eee table 1).ie evaluated numerically by

TABLE )..-VALUES FORF. (SEE (43).)

——

E“

0
.23
●5
● 7?

1.0
1.5

—— -

P

o I o.2~ I 0.5

0.1268
.1197
.1056
.0833
● 0652
,@3}15

Of1298
-y----
-- - -- -
-- “ . . . -.

-----.-

0.1399
---p---
-------
--------
-------
-.- ..- --

0.73

0.1604
. - -. --
--- - --
- --- - --
------
- - - ----

1.0

—-

0.1996
.1877
.1242
.0710
.0409
.0199

Next, fi~u-e 4 presents the variation of the additional
velocity’ ‘u* ‘-elong ~he tunnel radius in the PICJJ.Mx = O. Since
the Mach numlmr in this cme only aypears in the,factor in fr-mt

It is seen that the additional velocity toward the tunnel e’ge
tekes on Eossilly GO pement more. ThG mm.mmtion ?’:.en additional
velocity ~compa.rereference 5), constant over the cross section
does not prove correct, therei’orc~

-.
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Figure 5 shows the variation of — — along the tunnel

Tu
sxiB (Y= o).

For the velocity at the tunnel wall, from a rational point
of view, not u*, but the quantity ii increasedby the
displacement flow, is plotted for it is certainly this increased
velocity ii whioh is accessible for direct measurement. The
variation of ti as a function of x a pears in figure 6. For

Y.the two-dimensional.case (equation (32) it is necessary to
“evaluatethe integral.

f

w
qdq

F2=+ COS(&] cosh(q~) —
o e2q - 1

(44)

The nuuericel values obtainedby Simpsonts rule are in table 2.

Figures 7 and 8 show the variation of the additional velocity
u* elongthe y-sxis (x = 0) and along thex-sxis (y = O).
Figure 9 gives the tnduced velocity at the tunnel wall.

The downwash correction factor for the closed tunnel should
be represented by means of the upwash W* according to equation (41).
In integrating with respect to u the ‘unsuitableintegral.can be
avoided by using the following relation in accord with (36)

Then

where

~o

L f
03

du Cos(qci)
o

llr

i?K2(d - qKl(d
dq=fi

11 ‘(q)

x

(45)

dq (46)
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E
This function has been tabulated for ~

... . ,il-p=.o.”.””q
@ which the Integral has again been evaluated by Simpgongs rule.
(See table 3.)

The:curve for the variation of.,

The u~wash for the o~en jet is

,,

kc is shown in figure 10.

l+KF)

by which w
d

/’& r
m

1
‘1

q%lh)
K~ = da / Cos(qa) — dq

‘J ~ Jo Il(d

(47)

(48)

Table 4 contains the numerical values.

The curves are presented in figure 10. A comysrison with
the variation calculated by I. Lotz (reference 1), for W= O
and a wing of finite-’wimgspq.nshows good agreement in the case
of the open je-k,cm the other hand somewhat larger deviations for
the closed tunnel, without assigning a rea~on for this &!.fferent
behaviour. On the other hand the veriekion of both curves of figure 10
agree very well with the results calculated by TanI and Taima,
(reference 5) using the Burgers method.

SUNMARY

The problem of the effect of the limitation of the jet on
the flow past amodol is handledby proceeding from the Prandtl
linearization of the differential equation of’the compressible
medium. The tistur?mnce which the model causes near the well,
at the ssme time, is repre~ented, approximately,by a dipole or
horseshoe vortex. The loundsry-value problem arising in this,
at the limit of the ‘Setis solved exactly to learn the additional
flow due to the effect of the
are evaluated numerically, to

Translated by Dave Feingold
National Advisory Comnittee
for Aeron,autfics

edge of the stream. The solutions
the extent that they are of interest.
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TflBLE2.- VALUES FOR F2 ,(S’EX(44).)

t 1

!5

o
,25

●5
.75

1.0
1.5

,- —.--. —

“1 ““ ‘n

—— .

1
Io“ 0.23 o.~,.

I I
0.1309 0.1350 0 ● 1487

.1283. -..--- ..-”---

.1162 . . ... . .. I -------

.1016 ------ i --------

.0828 ------ -.-.-+-
● 0559 -------

1 ‘--””--
1,— - . ..— —

0.75

0.1771
-.--H-.
------
.- .-”-
..----
---...-

1I

I

TABLE :.- VALUESFOR Kg (- (46),)
. -.—
~<

I .—.--—.
\/l - p Kg

!
t-“–”—--—---t--”

o
.2

1.2
1.6
2.0
3.0
5*O

o
.1974
.3829
.6831
.8726
.9735

1.0198
1.0392
~. 0208

o
.2
.4
.8

1.2
1.6
2.0
4.0
6.0

o
.1571
.3057
.5531
.7186
● 8183
.8730
.9677
.9856

—— -——

100

0.2335
02239
●1696 ~
● 0974
.0637
.0323

..-
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I+sw.s.L... ...Tunnelw.11....d
~u*

fL

‘r

* u

- *-”-
\\\\\\\\Y \\\\\\\\\\\\\\

LOngltudlnalsectionor tunnel

Figs. 1,2

Figure l.- Designations intie caseof rotational symmetry. (x-axis is the
axis of symmetry).

,9 Tunnelwall

///////// / /,///,,,
AY

////// ‘/////

#f tP -
9 1.*X .— . —

Body in the flow,

showing cross section

///’////// //////// ////// / /“////

LongitudinalsectionOr t“”~=l TunnelcrossS=etlO”

Figure 2.- Designations in tie two-dimensional case.



Fig. 3 NACA TM ?SJO.1162

Figure

\ I ‘\
\ \y——— ——

3.- Horseshoe vortex and axis.



NACA TM I!Jo.1162 Figs. 4,5

Figure 4.- Axial additional velocity in the plane X ❑ O. Case of

rotational symmetry.

1,5

(0

0,5

I
M = u~chnumber
R = Tunnelr~dlua
T = Volumeorbody

45 4 ’45

Itigure 5.- Axial additional velocity along the tunnel axis. Caseof
rotational symmetry.
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Figs. 6,7 NACA TM No. 1162

3

2

‘i

Figure6.- Inducedvelocityon thehnnel wall. Case ofrotationalsymmetry.

+
I
I

45 1

Figure 7.- Axial additional veloci~ in the plane x = O. Two-dimensional
case.
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-.
$5

1

0,5

t--

t--

II

M= Mach number

h = Half tunnel height

j= profile area of

body

\

I

=
1 ‘1

additional velocity in center of tunnel for two-dimensional
case.

M= Mach number I

h = Half tunnel height

j = Profile area of

body.— —

Figure9.- Inducedvelocityon thetunnelwallforthetwo-dimensionalcase.



Fig. 10
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Figure 10.- Downwash correction factors for closed and open tunnels.


